Indian Statistical Institute First Semester Back Paper Exam, 2006-2007 M.Math.II Year Operator Theory Date: 05-01-07 Marks : $10 \times 10 = 100$ Instructor: T S S R K Rao

Time: 3 hrs

- 1. Let X be a Banach space and M, N are closed subspaces such that $M \cap N = \{0\}$ and X = M + N. Show that $P : X \to M$ defined by p(m+n) = m is a continuous, linear projection.
- 2. Let $T: L^2[0,1] \to L^2[0,1]$ be defined by $(Tf)(x) = i \int_0^1 K(x,y) f(y) dy$ where

$$\begin{array}{rcl} K(x,y) &=& 1 \text{ if } y \leq x \\ &=& -1 \text{ otherwise.} \end{array}$$

(Here $f \in L^2[0,1], x, y \in [0,1]$.) Find the eigenvalues of T.

- 3. Let X be a Banach space and let $\{T_n\}_{n\geq 1}$ be a sequence of compact operators such that $T_n(x) \to (x) \forall x \in X$. Show that $\{T_n\}_{n\geq 1}$ in a one-sided approximate identity of the Banach algebra $\mathcal{K}(X)$.
- 4. Let X be a Banach space and let $T : X \to X$ be a bounded linear operators. If the range of T^* is closed. Show that range of T is closed.
- 5. Show that $\mathcal{K}(\ell^2)$ is a separable Banach space.
- 6. Let A be a C*-algebra of compact operators such that A has no nontrivial ideals. Show that A is isometric to $\mathcal{K}(H^1)$ for some Hilbert space H^1 .
- 7. Show that any C^* -algebra without identity can be embedded as an ideal in a C^* -algebra with identity.
- 8. Let f be a state on a C^{*}-algebra A with identity. Show that there is a representation π of A on a Hilbert space H and a $\xi \in H$ such that $f(x) = \langle \pi(x)\xi, \xi \rangle$.
- 9. Show that the set of positive elements of a C^* -algebra with identity is a convex set.
- 10. Let \hat{A} be the C^* -algebra obtained by adjoining the identity e, to the C^* -algebra A. Let $f : A \to \mathbb{C}$ be a bounded positive linear map. Show that $\hat{f} : \tilde{A} \to \mathbb{C}$ defined by $\hat{f}(x + \lambda e) = f(x) + \lambda ||f||$ is a positive linear functional.